by Eckehard Cuny^a) and Rolf Jaeger^{*b})¹)

^a) Institut für Organische Chemie der Technischen Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt

^b) Institut für Organische Chemie der Universität Kiel, Otto Hahn Platz 4, D-24098 Kiel

The formation of (1R)-1-methylheptyl phenyl ether from (2S)-octan-2-ol *via* its isourea derivative (S)-1 follows a borderline mechanism. The intermediacy of a carbocation (see (S)-2) can be demonstrated (*Scheme 1*). However, the extremely high inversion of configuration and the olefinic by-products are also indicative of an S_N 2 mechanism.

Introduction. – Currently increased attention is being dedicated to chiral syntheses, because pure enantiomers are becoming much more important [1]. For example, with the help of the isourea method, it is possible to invert (+)-(2S)-octan-2-ol *via* (-)-(1R)-1-methylhexyl acetate to the enantiomeric, optically pure (-)-(2R)-octan-2-ol [2][3]. The same inversion is also possible with phenol instead of acetic acid as OH-acidic compound. In this way, the enantiomer (-)-(2R)-octan-2-ol is isolated from the corresponding phenol ether by means of ozonolysis. However, the rate of inversion of configuration amounts to 99.4%, which is a little lower [2–4]. Thus, both reactions proceed in a highly stereospecific manner.

Results and Discussion. – An analysis of spectrometric results was carried out to obtain a more detailed insight into the structure of the 1:2 adduct (S)-2, resulting from the (2S)-octan-2-ol-derived isourea (S)-1 and phenol (*Scheme 1*), in particular, to gain information about the molecular-structure type [3][5].

1) Current address: Benedixweg 14, D-21680 Stade.

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

First of all, the 1:2 molar ratio of the isourea to phenol in *rac*-**2** was corroborated by the ¹H-NMR spectrum (500 MHz; *Table 1*²)): the two CH groups of the cyclohexane rings of *rac*-**2** were observed as one signal with an intensity of two at $\delta(H)$ 3.22 (unresolved *multiplet*). The mobile NH and OH H-atoms appeared as one signal with an intensity of three at $\delta(H)$ 7.68 (*s*). Moreover, broadened signals (resolved *m*) at $\delta(H)$ 6.85, 6.90, and 7.22 were assigned to the ten H-atoms of the two Ph groups. On the other hand, the aliphatic H-atoms resonated, as expected, in the higher-field region at $\delta(H)$ 0.91 and 1.22 (2Me) and 1.13–1.35, 1.48, and 1.60 (unresolved *m*, CH₂) together with the signal of a tertiary H-atom at $\delta(H)$ 4.88 (resolved *m*). On the basis of these findings, a chemical formula with homonuclear H-bonds is proposed for (*S*)-**2** (see *Scheme 1*) [6]. As a consequence of this molecular arrangement in (*S*)-**2**, the NH signal at $\delta(H)$ 3.38 of the isourea (*S*)-**1** was shifted to lower field at $\delta(H)$ 7.68, because in the *rac*-**2** the electronic situations of the two N-atoms are equivalent. Moreover, the two different cyclohexane-CH signals at $\delta(H)$ 3.38 and 2.80 of (*S*)-**1** coalesced to one signal at $\delta(H)$ 3.22 in *rac*-**2**. Accordingly, a rapid exchange occurred between the mobile NH

	$\delta(\mathrm{H})$	$\delta(C)$
Me(1)	1.22 (d, J = 6.1)	19.70
H–C(2)	4.88 (pseudo-sext., $J(1,2) = J(2,3) = 6.1$)	73.82
$CH_2(3)$	1.48, 1.60 (2m)	36.29
$CH_2(4)$	1.13 - 1.35 (m)	25.1
CH ₂ (5)	1.13 - 1.35 (m)	29.21
CH ₂ (6)	1.13 - 1.35 (m)	31.75
CH ₂ (7)	1.13 - 1.35 (m)	37.4
Me(8)	0.91 (t, J = 7.0)	14.08
C(9)	_	154.01
CH(10,16)	3.22 (<i>m</i>)	53.03
CH ₂ (11)	1.48 (<i>m</i>)	33.99
CH ₂ (12)	1.76 (<i>m</i>)	25.26
CH ₂ (13)	1.61 (<i>m</i>)	25.28
CH ₂ (14)	1.76 (<i>m</i>)	25.26
CH ₂ (15)	1.48 (<i>m</i>)	33.99
CH ₂ (17)	1.48 (<i>m</i>)	33.95
CH ₂ (18)	1.76 (<i>m</i>)	25.26
CH ₂ (19)	1.61 (<i>m</i>)	25.28
CH ₂ (20)	1.76 (<i>m</i>)	25.26
CH ₂ (21)	1.48 (<i>m</i>)	33.95
C(22,28)	-	157.52
CH(23,27,29,33)	$6.90 \ (dd, J_o = 8.6, J_m = 1.0)$	116.07
CH(24,26,30,32)	$7.22 (dd, J_o = 8.6, 7.4)$	129.40
CH(25,31)	6.85 $(dt, J_o = 7.4, J_m = 1.0)$	119.12
OH, 2 NH	7.68 (s)	
^a) See <i>Fig. 1</i> for atom num	nbering.	

Table 1. ¹*H*- and ¹³*C*-*NMR* Data (500 and 125 MHz, resp.; CDCl₃) of rac- 2^{a})²). δ in ppm, J in Hz.

²) Arbitrary atom numbering; for systematic names, see *Exper. Part.*

1306

and OH H-atoms, respectively, of rac-2 which caused them to become equivalent on the NMR time scale: a type of three-point relationship exists between these H-atoms which is responsible for the same chemical shifts of the cyclohexane-CH protons [5]. The broad-band H-decoupled ¹³C-NMR spectrum was fully consistent with the structure of rac-2 (Table 1). Especially, the signals of C(22) and C(28) at δ (C) 157.52 were characteristic for the equivalence of the two phenol molecules. This means that they participate in the cyclic electronic flow involving C(9) and the two N-atoms, respectively, of the initial isourea moiety as shown in Scheme 1. A NOESY experiment (CDCl₃) with rac-2 revealed the relevant intramolecular ¹H, ¹H-contacts which were fully consistent with the proposed structure of an isouronium phenolate adduct in solution, with the characteristic feature of a C_2 axis through O–C(9) and the H-atom bridging both phenol O-atoms, an axis which is elongated by the C₈-alkyl chain with free rotation about the O-C(2) bond (Fig. 1 and Table 2). For example, the mobile Hatoms (NH, OH) were spatially vicinal to seven H-atoms (six strong, one weak) within the adduct (aliphatic CH_2 (DEPT) and CH and aromatic CH). Whereas the tertiary Hatom H-C(2) exhibited interactions with eight spatially vicinal H-atoms, the two cyclohexane-CH H-atoms also showed six spatial contacts.

Fig. 1. Selected NOESY correlations of rac-2²)

The IR spectrum (film) of adduct *rac*-**2** exhibited a broadened trough in the region $3600-2100 \text{ cm}^{-1}$, characteristic for intramolecular H-bonds. The band at 1630 cm^{-1} was indicative of the C=N group. This same band appeared in the solution IR spectrum of *rac*-**2** (0.034 m in CCl₄) at 1628 cm⁻¹. In addition, the latter spectrum exhibited a valence oscillation of the C=N group at 1655 cm^{-1} [5]. In an IR spectrum recorded at 100° , the characteristic band for *N*,*N*'-dicyclohexylurea (DCU) at 3320 cm⁻¹ was already apparent, as well as a > CH rocking oscillation at 640 cm⁻¹. Accordingly, at this temperature, the crystalline structure of *rac*-**2** was deliquescing since the reaction to form the final products started [5].

X-Ray Crystal-Structure Analysi of (S)-2. – On consideration of the abovedescribed spectrometric findings, it must be assumed that the protonated isourea and the phenolate anion exist as a tight ion pair in *rac-2*, albeit according to mass determinations only to an extent of 62-76% in CCl₄ solution [5][7–9].

By means of the X-ray crystal-structure analysis, the trimolecular structure of (S)-2 at 200 K was determined (*Fig.* 2), revealing the ionic character and demonstrating the

Irradiation δ [ppm]	H-atom	Enhancement⁵) ∂ [ppm]	H-atom
1.22	Me(1)	1.61 (s)	$H_{eq}-C(13), H_{eq}-C(19)$
		1.76 (vs)	$H_{eq}-C(12), H_{eq}-C(14), H_{eq}-C(18), H_{eq}-C(20)$
		4.88(s)	H–C(2)
		6.90 (<i>m</i>)	H_o
		7.22 (w)	H_m
		7.68(m)	NH
3.22	H–C(10),	7.68 (vs)	NH
	H-C(16)		
		4.88 (w)	H–C(2)
		1.84(s)	$H_{eq}-C(11), H_{eq}-C(15), H_{eq}-C(17), H_{eq}-C(21)$
4.88	H-C(2)	1.48 (w)	$H_b-C(3)$
		1.60 (w)	$H_a - C(3)$
		1.84 (w)	$H_{eq}-C(11), H_{eq}-C(15), H_{eq}-C(17), H_{eq}-C(21)$
		3.22 (w)	H-C(10), H-C(16)
		6.90 (w)	H_o
		7.68 (w)	NH
6.85	H_p	7.22(s)	H_m
6.90	H_o	7.68(s)	NH
		7.22(s)	H_m
		1.84 (w)	$H_{eq}-C(11), H_{eq}-C(15), H_{eq}-C(17), H_{eq}-C(21)$
		1.76 (w)	$H_{eq}-C(12), H_{eq}-C(14), H_{eq}-C(18), H_{eq}-C(20)$
7.22	H_m	6.85(s)	H_p
		6.90(s)	H_o
7.68	NH	1.60 (w)	$H_a - C(3)$
		3.22(s)	H-C(10), H-C(16)
		4.88(s)	H–C(2)
		6.90 (s)	H_o

Table 2. Characteristic NOE Data of the Isouronium Phenolate $rac-2^{a}$ ²)

H-bonds, respectively. This crystalline adduct exists as a dimer as shown in *Fig. 3*. As a consquence of the very rapid exchange of the bonding states, the atomic binding distances of the H-bonds become numerically visible (*Table 3, Fig. 3, Scheme 2*).

Mechanism. – Analogously to the $S_N 1/S_N 2$ mechanism operating during the formation of enantiomerically pure (1*R*)-1-methylheptyl acetate from (2*S*)-octan-2-ol by using the isourea method, olefinic by-products (octenes) are formed in significant yields during the reaction furnishing (1*R*)-1-methylheptyl phenyl ether from the isourea derivative (*S*)-2. They are produced following *E*1 and *E*2 mechanisms, respectively, caused by hydride shifts [3][10]. The intermediacy of the carbocation of (*S*)-2 additionally leads to products of nuclear alkylation, *i.e.*, 2-(1-methylheptyl)phenol and 4-(1-methylheptyl)phenol. These compounds are a confirmation for the intermediacy of a [(1-methylheptyl)oxy]carbenium ion [3].

As the adduct *rac*-2 exists in the crystalline state as a dimer, the question arises as to the way in which the reaction proceeds. It can be reasoned that at 100° in the molten

Fig. 2. X-Ray crystal structure of the trimolecular complex (+)-(S)-N,N'-dicyclohexyl-O-(1-methylheptyl)isouronium phenolate phenol ((S)-2)

Table 3. Bond Lengths of H-Bonds (a) and Covalent Bonds (b) in the Crystal of (S)-2 (see Fig. 3,
Scheme 2)

H-Bond	Length [Å]
$\overline{(N)1\cdots H\cdots O}$	0.96 (<i>b</i>)
$N(1) \cdots H \cdots O$	1.83 (a)
$N(2)\cdots H\cdots O$	0.94(b)
$N(2) \cdots H \cdots O$	1.84(a)
0…H…O	0.95(b)
$O \cdots H \cdots O$	1.51 (a)

state in the absence of any solvent and without an excess of phenol, analogously to an acetolysis, a phenolysis occurs. Thus, analogously to the formation of (1R)-1-methylheptyl acetate, a tight ion pair results, which reacts subsequently *via* a borderline mechanism to afford the (1R)-1-methylheptyl phenyl ether (ROPh) and N,N'-dicyclohexylurea (*Eqn. 1*) [8][11].

$$(\text{ROiU})^+(\text{PhO})^- \Longrightarrow \text{ROPh} + \text{DCU}$$
 (1)

Fig. 3. View of (S)-N,N'-dicyclohexyl-O-(1-methylheptyl)isouronium phenolate phenol ((S)-2) as dimer in the crystalline state showing H-bonds. R = alkyl chain, cHex = cyclohexane, Ph = phenol, $\bullet = C_2$ symmetry center.

The intermediate [(1-methylheptyl)oxy]carbenium ion is strongly shielded in this pathway by the two bulky cyclohexylamino residues so that a nucleophilic attack from the back is totally hindered. In spite of the detected partial S_N1 process, racemization is nearly impossible: an inversion of configuration of 99.4% occurs [3][8]. According to [12], a cation such as the one present in *rac*-2 may have sufficient stability and a sufficiently long lifetime due to hyperconjugation to ensure participation in the S_N1 mechanism, too (*cf.* [1][8]).

Conclusions. – From the above considerations, the formation of (1R)-1-methylheptyl phenyl ether from (2S)-octan-2-ol *via* (S)-**2** followed a borderline mechanism. The reaction proceeded with almost complete inversion of configuration (99.4%).

We thank Dr. *Stefan Immel* for the performance of the X-ray crystal-structure analysis and helpful advice. Contract/grant sponsor: *Deutsche Forschungsgemeinschaft*.

Experimental Part

General. The racemic compound *rac*-1 was resolved by the method of *Vogel* [13]. The synthesis of (-)-(1R)-1-methylheptyl phenyl ether (ROPh), the ozonolysis of this ether $(\rightarrow (2R)$ -octan-2-ol), and the isolation of the *C*-(1-methylheptyl)-substituted phenols are reported elsewhere [3]. IR Spectra: *Perkin*-

Elmer-421 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: *Bruker-DRX-500-Avance* spectrometer (*Bruker Biospin GmbH*); at 500.13 (¹H) and 125.76 MHz (¹³C); δ in ppm rel. to residual CHCl₃ in CDCl₃, *J* in Hz.

 $\begin{array}{l} (1S)-1-Methylheptyl \ N,N'-Dicyclohexylcarbamimidate \ ((S)-1). \ ^1H-NMR: \ 4.91 \ (pseudo-sext., H-C(2)); \ 3.38 \ (m, \ NH, \ H-C(10)); \ 2.80 \ (m, \ H-C(16)); \ 1.93 \ (m, \ CH_2(11,15)); \ 1.73 \ (m, CH_2(12,14,17,18,20,21)); \ 1.60 \ (m, \ 1 \ H \ of \ CH_2(3), \ CH_2(13,19)); \ 1.46 \ (m, \ 1 \ H \ of \ CH_2(3)); \ 1.32-1.00 \ (2m, 18 \ H); \ 1.20 \ (d, \ Me(1)); \ 0.90 \ (t, \ Me(8)); \ J(1,2) = J(2,3) = 6.2. \ ^{13}C-NMR: \ 150.61 \ (C(9)); \ 69.86 \ (C(2)); \ 54.68 \ (C(10)); \ 50.17 \ (C(16)); \ 34.93 \ (C(3)); \ 34.58* \ (C(11,15)); \ 34.54* \ (C(17,21)); \ 31.81 \ (C(6)); \ 29.35 \ (C(5)); \ 26.09** \ (C(13)); \ 25.78 \ (C(19)); \ 25.22; \ 25.17; \ 25.09; \ 25.05 \ (C(12,14,18,20,4)); \ 22.59 \ (C(7)); \ 19.64 \ (C(1)); \ 14.08 \ (C(8)). \end{array}$

Bis(cyclohexylamino)[(1-methylheptyl)oxy]methylium Phenoxide Phenol (1:1:1) (rac-2). ¹H- and ¹³C-NMR: *Table 1.*

The X-ray crystal-structure analysis of *rac-***2** was performed with an *Oxford-Diffraction-Xcalibert* single-crystal X-ray diffractometer (*Oxford Diffraction Ltd.*) and a sapphire CCD detector. For the crystallographic data, see *Table 4* (structure solution with SHELXS97 [14]). CCDC-943846 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/data_request/cif.

Formula	$C_{21}H_{41}N_2O + 2 C_6H_5O$	V [Å ³]	1555.6(4)
$M_{\rm r}$	524.77	Ζ	2
Crystal color	colorless	Reflections coll., unique	8621, 4426
Crystal dimensions [mm]	$0.08 \times 0.06 \times 0.04$	2θ Range [°]	2.56-27.89
Temperature [K]	200	Structure factor, $F(000)$	576
Wavelength Mo K_a [Å]	λ 0.71073	$D_{\rm x} [{ m g}~{ m cm}^{-3}]$	1.120
Crystal dimensions [mm]	$0.08 \times 0.06 \times 0.04$	Reflections used	1950
Crystal system	triclinic	Parameters refined	371
Space group	P1	Final R ($I > 2\sigma(I)$)	$R_1 = 0.0729, wR_2 = 0.1362$
Unit-cell dimensions:		reflections)	
a [Å]	11.577	R indices (all data)	$R_1 = 0.1569, wR_2 = 0.1811$
b [Å]	12.516	Goodness of fit, F^2	1.507
c [Å]	13.111	Extinction coefficient	0.0057(13)
α [°]	66.54	Diffraction radiation	graphite
β [°]	81.11	monochromator	
γ [°]	63.26		

Table 4. Crystallographic Data of rac-2

REFERENCES

- [1] E. Cuny, R. Jaeger, Chem. Unserer Zeit 2010, 44, 40.
- [2] E. Vowinkel, R. Jaeger, Angew. Chem. 1971, 83, 937; Angew. Chem., Int. Ed. Engl. 1971, 10, 862.
- [3] R. Jaeger, Synthesis 1991, 465.
- [4] E. Vowinkel, Chem. Ber. 1966, 99, 1479; E. Vowinkel, Angew. Chem. 1963, 75, 377.
- [5] R. Jaeger, Ph.D. Thesis, 1971, Universität Kiel.
- [6] T. Steiner, I. Majerz, C. C. Wilson, Angew. Chem. 2001, 113, 2728; Angew. Chem., Int. Ed. 2001, 40, 2651.
- [7] P. Müller, 'Glossary of Terms Used in Physical Organic Chemistry', Pure Appl. Chem. 1994, 66, 1077.
- [8] R. Jaeger, J. Phys. Org. Chem. 1998, 11, 47.
- [9] 'Facts and Methods', 'Columns and Accessoires for Chemical Instrumentation', F & M Scientific Division of Hewlett-Packard, Avondale, Pennsylvania, 1966, Vol. 7, No. 3, p. 10.
- [10] M. C. Whiting, Chem. Britain 1966, 2, 482.
- [11] R. A. Sneen, W. A. Bradley, J. Am. Chem. Soc. 1972, 94, 6975; R. A. Sneen, J. W. Larsen, J. Am. Chem. Soc. 1969, 91, 362; E. D. Hughes, C. K. Ingold, J. Chem. Soc. 1935, 244.

- [12] A. Streitwieser, C. H. Heathcock, F. M. Kosower, 'Organische Chemie', 2nd. edn., VCH, Weinheim, 1994.
- [13] A. I. Vogel, 'Practical Organic Chemistry', 3rd edn., Longmans, London, 1956.
- [14] G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, 1979.

Received July 5, 2012